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AT, and 7, which arise because of the truncation of the perturbative series, are inves- 
tigated by comparing expressions in the on-shell and MS schemes of renormalization, 
and studying their scale variations. Starting from the conventional on-shell formulae, 
we find rather large scheme and scale dependences. We then propose a simple, physi- 
cally motivated modification of the conventional expressions and show that it leads to 
a sharp reduction in the scheme and scale dependences. Implications for electroweak 
physics are discussed. 

*Permanent address: Max-Plan&-Institut fiir Physik, Werner-Heisenberg-Institut, Fghringer Ring 6, 
80805 Munich, Germany. 

4sp 0 erated by Unlversities Research Association Inc. under contract with the United States Department of Energy 



1 Introduction 

Recent developments in electroweak radiative corrections have focussed attention on leading 
effects that occur at two and, sometimes, higher-order loops. For example, the complete 
O(aa,) contributions to the electroweak corrections Ar [l] and A+ [2,3] have been evaluated 
[4, 51. Defining 

X, = (G,M,‘/87r2h), (1) 

where Mt is the top-quark pole mass, several analyses have investigated the Mt-dependent 
corrections of 0(X:) [6, 71, O(Xtcv,) [8], and O(Xt~i) [9] to Ap. There are also estimates of 
the contributions of O(X,crf) and higher to this amplitude, based on optimization meth- 
ods and renormalon calculations [lo]. In turn, these leading X, contributions are sim- 
ply related to those present in Ar and A+. In the case of r, the parameter occurring in 
the 2 --f b& amplitude, the Mt-dependent corrections have been carried out up to 0(X;) 
[6, 71 and O(Xtcu,) Ill]. Subleading terms of O(crXt) to Ap [12] and a subclass of sub- 
leading contributions of O(CYCY%) to Ar associated with the (t, b) isodoublet [13] have also 
been considered. In these order-of-magnitude characterizations, cr should be roughly in- 
terpreted as [&(M~)/ri~(M.z)] M 0.01 (th e carets represent running MS couplings), a, as 

4 Mz)/r M 0.04, and Xt z 0.0034 (corresponding to Mt z 180 GeV). 
In the present paper, we examine the scheme and scale dependences of the leading Mt- 

dependent corrections, which arise because of the truncation of the perturbative series. 
Therefore, we focus our attention on the contributions of O(X,~,X~CU,,X~CY~) to Ap and 
Ar, and those of O(X,2,X,a,) t o r. In Section 2, we give the basic expressions of these cor- 
rections in the conventional on-shell (OS) SC h eme, the relation between the Yukawa coupling 
of the top quark and OS parameters, and the corresponding expressions for Ap, Ar, and r 
in the MS formulation. In all applications, we use Mt = 180 GeV, the current average value 

The scheme dependence is studied in Section 3 by comparing the leading contributions 
to Ap, Ar, and r evaluated in the OS and MS schemes of renormalization, at the scale 
p = Mt or, alt ernatively, at their respective minima. An analogous analysis in the case of 
Ap was carried out in the interesting paper by Bochkarev and Willey [15], who reported a 
scheme dependence which is very sensitive to the Higgs-boson mass, MJJ, and becomes large, 
approximately 2 x 10m4 in Ap, for MH x 1 TeV. Starting with the usual OS formulation 
of Ap, we obtain MS expressions that agree with those of Ref. 1151. However, as explained 
in Section 3, we apply those expressions in a very different manner and find a scheme 
dependence that is considerably less sensitive to MH, but still rather large. 

The scale dependence is studied in Section 4, for a fixed value MH = 300 GeV, mainly by 
examining the scale variation in the MS scheme, which is more sensitive, at current levels of 
precision, than the OS formulation. Using the same conventional expressions as in Section 2, 
we find a rather large scale dependence. We also briefly discuss the scale variation when two 
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different parameters, & and [Q~D, associated with the electroweak and QCD corrections, 
are employed. 

In Section 5, we examine a simple, physically motivated modification of the conventional 
formula for Ap in the OS scheme, as well as in the expression relating the top-quark Yukawa 
coupling with Xt, and show that it sharply decreases the scale and scheme dependences of 
Ap and Ar. 

Section 6 presents a summary of the main results of the, paper and discusses their impli- 
cations. 

2 Basic Expressions in the Conventional Formulation 

The conventional expression for the leading Mt-dependent contributions to Ap is given, in 
the OS scheme, by 

Ap = 3x, [l + &p”‘(r) + &+QCD) + ~2(/‘QCD)~2(~QCD)] , (2) 

where Xt is defined in Eq. (l), u(p) = cy&)/ 7r, and r = MH/M~. The function pt2)(r) is 
given in closed form in Eq. (12) of Ref. [7], and by useful interpolating formulae in Eq. (34) 
of Ref. [5]. Representative values of pt2)(r) are shown in Table 1. The constant & is the 
familiar coefficient [ 81 

61 = -; ; + 1 = -2.85991, 
( 1 

(3) 

and, to good approximation, we have [9] 

b2(p) = -14.59403 - 5.00485L, (4 
where 

L = ln(p2/Mf), (5) 
and henceforth all MS running couplings are assumed to evolve with six active flavors. 

The relation between the %!iS Yukawa coupling it of the top quark, G,, and M, is given 
bY 

where 
?&IJ, PQCD) = 23’4G:/2M [I+ &&“(pt& + @cD(pQCD)] , (6) 

A;(P)=gL+ll-g+r2(r2-G)lnr+ 
r2 - 4 
ITS’ (7) 

(f-9 9(r) = 
I 

2~c-Pcos-1 f, if 0 <r 5 2, 

-2JFZcosh-’ f , if r > 2, 

- 1 = -a(p) (L + $) - a2(p) (iL2 + ;L + 9.12545) , (9) 
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Table 1: Representative values of P(~)(T), T(~)(T), and Ay(Mt) as functions of MH for Mt = 
180 GeV. 

MH [GeV] -p(2)(T) T(~)(T) Aw( M,) 
60 0.3;333 3.69253 3.13525 8.b7587 
150 0.83333 6.31751 1.68121 5.61002 
300 1.66667 8.82919 1.23854 3.71993 
450 2.50000 10.23518 1.59534 3.45827 
600 3.33333 11.05048 2.21713 4.37506 
1000 5.55556 11.76739 4.18305 11.42232 

and tit(~) is the MS running mass in &CD. It is interesting to observe that A;(p), and 
therefore yt, has a minimum at MH = 2.243Mt (representative values are shown in Table 1). 
Through terms of 0(Xtc~)), Eq. (6) can be gleaned from Ref. [16]. To the same accuracy, 
an equivalent expression was obtained in Ref. [15]. A n independent derivation of Eq. (6), 
in the framework of Ref. [ 171, is given in the Appendix, where the terms of 0(X&) in 
Eq. (9) are also obtained. As pointed out in Refs. [15, 161, the tadpole contributions cancel 
in Eq. (6). F ur th ermore, as shown in the Appendix, Eq. (6) is gauge independent. Defining 
zt = ($/32x2), Eq. (6) leads to 

it (P~,PQCD). = Xt [I+ JG4”(pw)/2 + @cD(~~co)]2. (10) 

Through terms of O(Xf,Xtcy,, Xta$), the expression for Ap in terms of MS parameters 
is obtained by writing X, in terms of zt via Eq. (lo), inserting the result in Eq. (2), and 
truncating the answer at the corresponding orders. One readily finds 

AP = 3zt {I+ zt [P(~)(T) - A:&)] + &(P~cD)+~cD) + ~2(p4~~)~2(pQc~)}, (11) 

where 

&(p) = 2L - 0.19325, (12) 

s2(~) = :L2 + 6.02533L + 1.36377. (13) 

In order to facilitate later discussions, in Eqs. (2), (6), (lo), and (11), we have employed two 
distinct scales, pW and PQCD, associated with electroweak and QCD corrections, respectively. 
Because the QCD correction to the MS parameter involves Gzt(p)/Mt - 1 and the top quark 
does not decouple in the evaluation of &(p),l for the purposes of this paper we employ 

‘We are indebted to K.G. Chetyrkin for this observation. 

4 



six active quark flavors in the evolution of the %!S parameters. It is worth emphasizing, 
however, that if one is interested in simply applying the OS formula for Ap [Eq. (2)], it is 
also consistent and, in fact, simpler to evolve u(p) for ~1 < Mt with five active flavors [18], 
in which case the coefficient of L in Eq. (4) must be changed to -5.48150. 

In order to evaluate cxs”)(p), we proceed as follows. Using the world average of CZ!‘)( Mz) = 
0.118, Mz = 91.1887 GeV [14], and a three-loop expression, we find a!lj)(Mt) = 0.10703 for 

Mt =180 GeV, and ay)(Mt) = @)(Mt) { 1 + (7/24) [af5)(Mt)] ‘} = 0.10707, where we apply 

the matching condition of Ref. [19]. A s we have only included terms of O(Xtcy,, X&) in 
our expressions, for the purposes of this paper we evolve CY~)(~) with a two-loop formula, 

*p-‘(p) = 
7r 

[ 

py’ In 1n(p2/A2) 

/3~)ln(~2/h2) ’ - 1 (/3r’)’ ln(p2/A2) ’ 

where &, @) = 11/4 - nr/6 = 7/4 [20] and /?!“I = 51/8 - 19nf/24 = 13/8 [21]. We employ 
A = 91.332 MeV, adjusted to reproduce ap)(Mt). The evaluation of (Y?)(P) in the r case is 
discussed later on. 

Recalling the basic relation [1] 

s2c2 = &‘pMzl - AT) ’ (15) 

where s2 = 1 - c2 is an abbreviation for sin2 6~ = 1 - M&/M;, and that, to leading orders 
in Xt [22], 

1 - AT = [1 + (c2/a2)bp] (1 - Acr) + . . . , (16) 

we have 

c2 = (p/2) [1+ da] , (17) 

where p = (1 - Ap)-l, A = (~ii/fiG,Mi), and or = a/(1 - ACY) is the value of cy(p2) at 
p2 = Mi in the OS scheme. From Eq. (16) we also obtain 

AT = ACY - (c”/s”)Ap(l - Acr). (18) 

Equation (18) is our leading-order expression for AT in the OS scheme. It is understood that 
here Ap is computed from Eq. (2), and c2 and s2 from Eq. (17). To obtain the corresponding 
expression in the MS scheme, we note that, to leading order in Xt, 

;“(P) = s2 [I+ k21s2hW] > (19) 
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an expression that can be inferred from Eq. (18) of Ref. [3]. It follows that c2 = i”(cL)p(p) 
[in these expressions, i”(p) = 1 - t2(p) is an abbreviation for the MS parameter sin2 &.&L)]. 
We thus obtain c2/s2 = ?“/(i” - Ap) and 

AT=Aa-d2-Ap i.2Ap (1 - Aa), 

which is our leading-Xt expression for AT the MS scheme. In Eq. (20), it is understood that 
’ Ap is evaluated from Eq. (11) and i2 from 

i”(p) = f [1 - 4-1 . (21) 

A few words of clarification are required at this point. In the MS scheme, it is natural to 
employ the coupling &(Mz) = o/(1 - CYA?/T) [5] rather than c%(Mz) = o/(1 - ho). This 
would require the substitution Aa! + crA,/r in Eq. (16) and or --f & in Eq. (21). However, 
cuA,/n and ha differ by sizeable contributions of O(a), namely cuA,/n - ACY M 7.1 x 10m3. 
In a complete calculation, this O(CY) difference is cancelled when the subleading contributions 
[the dots in Eq. (IS)] are taken into account. In a truncated version, in which only leading 
contributions are considered, it is important to compare OS and %iS expressions that coincide 
at the one-loop level. Therefore, for the purposes of this paper, we employ the same ACY 
correction and A parameter in the OS and MS formulations. 

For the r correction in the 2 + bb amplitude, we have, in the OS scheme, 

7 = -2& [I + &T(“)(T) - (~2/3)~(/Qc~)] , (22) 

where T(~)( T is lven in closed form in Eq. (20) of Ref. [7]. Representative values are shown ) ’ g’ 
in Table 1. In the MS scheme, one obtains 

7 = -232 { 1 + zt [T’“‘(T) - A:&)] + ~&J.cD)~(PQcD)} , (23) 

where 
F,(p) = 2L - (r2 - 8)/3. (24) 

In Eqs. (22)-(24), ‘t 1 is understood that the universal correction 1 + CY,/T has been factored 
out in the expression for the 2 + b& width. Because Eqs. (22) and (23) include only O(Xtar#) 
corrections, in their analysis we employ ari6)(p) evaluated with the one-loop p function [20] 
[first term of Eq. (14) with A = 41.148 MeV, adjusted to reproduce the value of #(M,)]. 

Our basic expressions to study the scheme and scale dependence of Ap are Eqs. (2), 
(lo), and (11). In th e case of AT, the basic relations are Eq. (18) (OS) and Eq. (20) (MS). 
It is understood that in Eq. (18) one identifies Ap with Eq. (2) and c2 with Eq. (17), 
while in Eq. (20) one employs Eq. (11) for Ap and Eq. (21) for A2(p). For r, the relevant 
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expressions are Eqs. (lo), (22), and (23). It should b e emphasized that, in these OS and 
MS expressions, the corrections Ap, AT, and r stand for the same quantities, expressed 
in two different renormalization frameworks. The scheme dependence arises because these 
expressions are truncated at 0(X:, Xtcy,, X&). 

An MS formulation of Ap and 7, in the presence of leading electroweak corrections, 
has also been proposed in the interesting paper of Ref. [7]. These authors use the simple 

(2) prescription of dropping the l/c singularities in the bare expression PB and refer to the 
resulting renormalized parameter as the MS mass of the top quark. We note that, although 
simple and interesting in its own right, this procedure does not correspond, in the case at 
hand, to the usual MS renormalization. The point is that the MS mass counterterm contains 
l/e singularities that not only cancel the corresponding ones in pB , (2) but also generate finite 
terms when combined with the O(E) parts of the one-loop expression. Contributions of this 
nature were included in Ref. [7] in the derivation of the OS formulae, but not in the transition 
to the %8!? formulation. A more serious difficulty is that the prescription of Ref. [7] cannot be 
easily generalized in a gauge-independent manner to the full theory.. This can be understood 
as follows: From the relation Mt -SM, = &-6&, where Mt and 6Mt are the pole mass” and 
the associated counter term, and ‘IjLt and &zt the corresponding MS quantities, one sees that 
a gauge-independent definition of & requires that SM, be a gauge independent. To leading 
order in X, the conventional top-quark self-energy C is gauge independent, so that there is 
no immediate problem (we ignore here subtleties associated with the top-quark instability). 
However, this is not so in the full theory, where the tadpole contribution must be included 
to obtain a gauge-independent expression for 6Mt. A potential difficulty is that tadpole 
diagrams not only contain gauge-dependent pieces necessary to cancel corresponding ones in 
C, but also large gauge-independent contributions proportional to (MP/m&&) ln( M,/mz) 
[16, 171. 

As pointed out by Bochkarev and Willey [15], these potential problems are neatly circum- 
vented by employing the MS Yukawa coupling of the top quark, in which case the tadpole 
diagrams cancel due to the combination of the top-quark and W-boson self-energies. This 
is, in fact, the strategy followed in the present paper. 

3 Scheme Dependence in the Conventional Formula- 
tion 

We study the scheme dependence by comparing the OS and MS expressions of Ap, AT, 
and r for ~1 = &,, = j.LQcD = Mt. Alternatively, one may compare the extrema of these 

2The frequently emp lo y ed expression pole mass is, rigorously speaking, a misnomer. Because the gluon 
is massless, Mt represents the start of a branch cut. We are indebted to W. Zimmermann for reminding us 
of this fact. 



corrections, regarded as functions of p. The relevant expressions are given in Section 2. We 
fix Mt = 180 GeV and allow MH to vary. Using Eq. (lo), we determine zt as a function 
of MH. Inserting this value of xt in Eq. (11) leads to the MS evaluation of Ap, which is 
then compared with that from the OS formulation of Eq. (2). For AT, we simply insert 
the MS value for Ap in Eqs. (20) and (21), and compare the result with Eq. (IS), where 
Ap is given by Eq. (2) and c2 is determined from Eq. (17). For definitiveness, we employ 
Acu = 0.0595, obtained from Ref. [23] by appending the two-loop QED correction to the 
leptonic contribution [5]. This corresponds to ii(M = 128.882. Alternative evaluations 
are given in Ref. [24]. For 7, we insert the value of zt in Eq. (23) and compare the result 
with Eq. (22). 

Table 2: Scheme dependence in the conventional formulation. The OS and MS values of Ap, 
AT, and --7 are compared for p to = j.&QCD = Mt = 180 GeV. The relevant formulae are given 
in Section 2. The columns labelled O#. give the differences between the respective OS and 
MS values. 

MH lo3 Ap 

[GeV] OS MS Diff. 
60 8.865 8.924 -0.060 
300 8.688 8.771 -0.083 
600 8.612 8.709 -0.098 
1000 8.587 8.688 -0.101 

- 
T- 

OS 
3.0163 
3.0780 
3.1046 
3.1132 

T 

lo2 AT - 10% 

OS MS Diff. 
6.082 6.111 -0.030 
6.038 6.068 -0.030 
6.061 6.088 -0.028 
6.106 6.134 -0.029 

The results for put = pQCD = Mt are given in Table 2. We see that the MS evaluation 
of Ap is larger than its OS counterpart by 6 x lo-’ for MH = 60 GeV, by 8 x lo-’ for 
MH = 300 GeV, and by 1.0 x 10s4 for M H = 1 TeV. Through terms of O(X,2,X,a,), 
Eqs. (2), (lo), and (11) are consistent with those of Ref. [15], a welcome check. However, the 
scheme dependence of Ap obtained in that work shows a sharp dependence on MH, reaches 
about 2 x 10m4 for MH = 1 TeV, and is generally very different from that in Table 2; for 
instance, for large MH it has the opposite sign. The reason is easy to understand: In the 
evaluation of zt from Xt [Eq. (lo)] carried out in Ref. 1151, MH is fixed to be 300 GeV, while 
in Eq. (11) ‘t 1 is allowed to vary. This procedure breaks the equivalence of the OS and MS 
formulations to 0(X:), i.e., at the order of validity of the expansions, and induces a large 
but artificial MH dependence. 

It is instructive to estimate the order of magnitude of the higher-order terms that may 
possibly affect the scheme-dependence. Since in Eq. (2) for p = Mt the order of magnitude 
of the QCD corrections is approximately 12%, X, 
of MH, pt2) I I 

M 3.4 x 10b3, and, for a significant range 
x 10, we may reasonably expect 0(X,2 a,) contributions in Ap of magnitude 

lo-2 x (3.4 x 10-3) x 10 x 0.12 % 4 x lo-5. If these corrections were to affect the OS 
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and MS calculation differently, one would expect similar scheme-dependent effects. In fact, 
Table 2 shows a scheme dependence of that magnitude, albeit larger by roughly a factor 
of 2-2.5 for MH >_ 300 GeV. The corresponding effects for AT in Table 2 are 2.1 x 10s4 
for MH = 60 GeV, 2.9 x 10m4 for MH = 300 GeV, and 3.5 x 10m4 for MH = 1 TeV, i.e., 
a factor of about 3.5 larger than in Ap, as roughly expected from the c2/s2 enhancement 
factor in Eq. (18). By comparison, the error in AT induced by the present uncertainty in Acu 
is about 7 x 10s4 [23]. W e would characterize the scheme dependence for Ap and AT shown 
in Table 2 as rather large. In fact, recalling that it arises from three-loop contributions and 
beyond [0(X: cu,,X,3)], its magnitude is, at first hand, surprising. On the other hand, in the 
case of r, we see a small, nearly MH-independent effect of about -3 x 10w5. 

Another way to study the scheme dependence is to compare the OS and MS evaluations, 
not at a common scale p = Mt, but at their respective minima. For example, as shown in 
Section 4, for MH = 300 GeV the OS and MS evaluations of Ap take the minimum values 
8.642 x 10m3 at p = 0.204 Aft and 8.708 x 10m3 at p = 0.520 Mt, respectively. This shows a 
difference of -6.5 x lo-‘, which is similar, albeit somewhat smaller than the effect in Table 2. 

4 Scale Dependence in the Conventional Formulation 

In order to study the scale variation, we use the expressions of Section 2 to evaluate Ap, 
AT, and r as functions of p = put = /.LQCD = (Mt, over a wide range of scales. For 
definitiveness, the value MH = 300 GeV is used. The results are shown in Table 3 for the OS 
and MS frameworks. The last three rows indicate the maximum variations over the intervals 
0.5 5 [ 5 2, 0.25 5 t 5 4, and 0.125 2 t 5 8. The scale variation of Ap in the OS and 
MS formulations of Section 2 is also displayed in Figs. 1, 2, and 3 for MH = 300, 60, and 
1000 GeV, respectively (in all cases, we employ Mt = 180 GeV). 

As expected, the MS evaluations are more sensitive than their OS counterparts, although 
this effect is not pronounced in the r case. The scale variations shown in Table 3 are rather 
large. For instance, over the relatively conservative interval 0.5 5 t 2 2, we have an MS scale 
variation of 7.8 x 10m4 in AT, which is slightly larger than the current uncertainty in A(Y [23], 
and a scale variation of 2.2 x 10d4 in Ap, which is comparable to the 0(X:) contribution 
to Eq. (2) (the latter amounts to 3.0 x 10e4). In other words, over this interval, the scale 
variation due to neglected three-loop effects is about 70% as large as the leading two-loop 
electroweak correction. If one considers the larger intervals 0.25 5 t 5 4 and 0.125 5 t 5 8, 
the variations become very large and encompass values of Ap, AT, and r very different from 
the accepted ones. 

The optimization points of Ap in the OS formulation cluster around the lower end of the 
table: 

1. The BLM [25] al SC e is [ = 0.154, where Ap = 8.645 x 10m3; 
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appear to admit a simple interpretation because leading neglected corrections include mixed 
contributions of O(Xfa,). 

5 Proposed Modification 

We have seen that the expressions of Section 2, based on the conventional OS formulation of 
Ap [Eq. (2)], lead t o rather large scheme and scale dependences. In this section, we propose 
a simple modification of Eq. (2), i.e., the conventional OS expression for Ap, and Eq. (lo), 
i.e., the relation between the Yukawa coupling of the top quark and the OS parameters, and 
show that it leads to a sharply smaller scale variation, as well as a much reduced scheme 
dependence. The modified expressions agree with the previous ones at the 0(X;, Xtcy,, X&) 
level, where complete calculations have been carried out. The physical motivation is the 
observation that, to O(Xt), large QCD corrections, of order 12%, occur at PQCD = Mt if the 
pole mass Mt of the top quark is involved, as in Eqs. (2) and (lo), while they are very small 
if the MS Yukawa coupling is the relevant expansion parameter, as in Eq. (11). As a working 
hypothesis, supported by observations based on optimization and renormalon considerations 
[lo], we assume that similarly large effects are induced by the presence of Mt also at the 
0(X:) level. Defining 

% = &[I + &+QCD)+ b2(pQCD)a2(pQCD)], 

this suggests the modification 

Ap = 3X’t [1 + I;;/Jc2)(T)] , 

which replaces Eq.(2). 
Through term of 0(X;, Xto,, Xtcyi), Eq. (10) can be expressed as 

%(P~,PQcD) =X, [I+&& +EI(PQCD)+QCD) +~~(PQcD)~~(~QcD)], 

where 

E&L) = -2L - 1, 

E2(CL) = 4 - 12 EL - 16.47312. 

As Xt involves Mt, in analogy with Eq. (26), we modify Eq. (27) to read 

zt(pw,p~co) = Xt (I+ EIU + 62~~) [I + Ay(pw)& (I+ EIU+ EMU')] . 
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As Eq. (11) does not involve Mt, except in L, where it plays the role of a unit of mass in 
the scale definition, the MS expression is not altered. In the case of r, the OS expression 
becomes 

I- = -2xt [I - (r’/+(pQCD)] {I+ T(2)(T)xt [I - (*2/3)+QCD)]}, (31) 

Eq. (23) does not change, and zt is given by Eq. (30) with ~2 put to zero. In summary, the 
proposed modification is to replace Eq. (2) by Eq. (26), Eq. (10) by Eq. (30), and Eq. (22) 
by Eq. (31). For clarity, we emphasize that these expressions do not include the complete 
three- and higher-loop effects of 0(X:, Xfcy,, . . .), as the latter are currently unknown. 

Table 4: Scheme dependence in the modified formulation. The relevant formulae are given 
in Section 5. Otherwise, the meaning of the table is as in Table 2. 

MH 103Ap lo2 AT -1037- 

[GeV] OS MS Diff. OS %iS Diff. OS MS Diff. 
60 8.892 8.874 0.018 3.0067 3.0131 -0.0064 6.067 6.074 -0.008 

300 8.754 8.743 0.011 3.0551 3.0590 -0.0039 6.032 6.044 -0.012 
600 8.694 8.679 0.015 3.0760 3.0813 -0.0053 6.050 6.062 --0.012 
1000 8.674 8.625 0.049 3.0828 3.1000 -0.0172 6.085 6.088 -0.002 

The scheme dependence obtained in this new framework is shown in Table 4. Again, the 
OS and MS evaluations are compared at pL, = ~QCD = Mt = 180 GeV. Recalling Table 2, 
we see that the scheme dependence is much reduced when the proposed modification is 
employed. For example, in the Ap case, the difference between the OS and MS evaiuations 
is decreased in magnitude relative to Table 2 by factors of 3.3 for MH = 60 GeV, 7.5 for 
MH = 300 GeV, 6.5 for MH = 600 GeV, and 2.1 for MH = 1 TeV. Similar improvements 
are manifest in the AT and r columns. 

The scale variation in the modified version is shown in Table 5. In the Ap case, it is also 
displayed in Figs. l-3, where it is compared with the conventional approach of Section 2. 
Again, the OS and MS expressions are evaluated as functions of puI = ,ILQCD = (Mt for 
MH = 300 GeV. Comparison with Table 3 shows that the proposed modifications indeed 
lead to a sharp reduction in the scale dependence of the MS evaluations of Ap and AT. For 
example, the scale variation of AT is reduced from 7.8 x 10B4 to 1.8 x 10m4 for 0.5 5 < 5 2, 
from 1.5 x 10v3 to 2.4 x 10d4 for 0.25 < [ 2 4, and from 2.4 x 10m3 to 3.4 x 10s4 for 
0.125 < f 5 8. The scale variation of Ap over 0.5 2 [ < 2 now is 5.2 x lo-‘, which is 
about 6 times smaller than the leading 0(X:) contribution. We also note that this modified 
framework leads to MS scale variations which are similar and frequently smaller than their 
OS counterparts, in sharp contrast with the conventional expressions in Section 2. 
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Table 5: Scale dependence in the modified formulation (Section 5). Otherwise, the meaning 
of the table is as in Table 3. 

0.125 
0.25 
0.5 
1 
2 
4 
8 

OS 

8.718 
8.711 
8.727 
8.754 
8.786 
8.821 
8.856 

MS 
3.0418 
3.0750 
3.0709 
3.0590 
3.0525 
3.0561 
3.0708 

- 

r -1 

OS 
5.780 
5.881 
5.963 
6.032 
6.091 
6.141 
6.184 

MS 
5.259 
5.748 
5.979 
6.044 
6.004 
5.899 
5.753 
0.065 
0.30 
0.79 

In the case of r, we see a significant reduction in the scheme dependence and in the i@? 
scale variation in the interval 0.5 5 < 5 2 (fr om 1.6 x 10s4 to 6.5 x 10m5). On the other hand, 
the variations over the wider ranges 0.25 5 [ 5 4 and 0.125 2 [ 2 8 are similar to those 
based on Section 2. It is important to emphasize, however, that our analysis of r is at a 
considerably lower level of precision than those involving Ap and AT. Because the correction 
of 0(X&) has not been evaluated, our study of r has been restricted to leading-order QCD 
effects. Under these conditions, the QCD corrections induce a large scale dependence even 
in the OS framework, and the evaluation of r becomes much less reliable for values of [ very 
different from unity. To check this point, we have repeated our analysis of r, employing 
two-loop formulae, in an hypothetical scenario in which the QCD corrections to r in the OS 
framework are assumed to be -(r2/3)u( Mt) - 15a2( Mt) + . . . . In this scenario, the QCD 
corrections to r are very similar to those occurring in Ap. We find again the same pattern 
we encountered in Ap and AT. For MH = 300 GeV, the modified three-loop expressions 
reduce the scheme dependence from -1.4 x lo-’ to -1.4 x 10m6. The scale dependence in 
the MS scheme decreases from 1.1 x 10v4 to 1.6 x 10e5 for 0.5 2 [ 5 2, from 2.4 x 10q4 to 
7.2 x lo-’ for 0.25 5 t I: 4, and from 5.7 x 10m4 to 2.3 x 10B4 for 0.125 < t 2 8. 

Equal-level curves for the MS evaluation of Ap, based on the modified framework [Eqs. (11) 
and (30)] in the (log, &, log, ~QCD) plane are shown in Fig. 5 for Mt = 180 GeV and MH = 
300 GeV. The crosses correspond to a maximum at (&,, (QCD) = (1.199,2.387), where Ap = 
8.780 x 10w3, and a saddle point at (&, (QCD) = (0.304,0.300), where Ap = 8.694 x 10s3 [this 
is a local maximum (minimum) in the tuI (&D) direction]. For 6 = tu, = (QcD, the small 
circles indicate the locations of a maximum at t = 2.247, where Ap = 8.762 x 10m3, and a 
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minimum at t = 0.298, where Ap = 8.694 x 10B3. The latter nearly coincides with the saddle 
point in the two-dimensional analysis. The figure shows a large, relatively flat plateau en- 
closing the extrema. This feature and the greater spacing of the equal-level contours relative 
to Fig. 4 illustrates the reduced scale variation of the modified approach. 

In the OS formulation, Ap has a minimum at < = 0.204, where Ap = 8.710 x 10e3. The 
difference with the minimum in the MS formulation is 1.6 x lo-‘, which is larger than the 
variation between the OS and MS results at p,,, = /LQCD = Mt, but still very small. 

6 Conclusions 

Starting from the conventional on-shell expression for the leading Mt-dependent contribu- 
tions to Ap [Eq. (2)], and employing the relation between the Yukawa coupling Yt of the 
top-quark, G,, and Mt [Eq. (lo)], we obtained the associated MS formula [Eq. (ll)]. The 
corresponding expressions for AT and T are also given in Section 2. 

For Mt = 180 GeV and 60 GeV 5 MH 5 1 TeV, the comparison of the OS and MS 
expressions at p Iu = /.LQCD = Mt shows differences ranging from -6.0 x 10e5 to -1.0 x 10B4 
in Ap and from 2.1 x 10m4 to 3.5 x low4 in AT (Section 3). Similar, albeit somewhat smaller 
variations occur if the two expressions are compared at their respective extrema. For AT, 
these scheme-dependent variations are somewhat less than half the current uncertainty of 
approximately 7 x 10m4 induced by the analysis of Aa [23]. For MH > 300 GeV, they are, 
however, larger by factors of 2-2.5 than the naive estimate of the O(X~CY~) effects, namely 
(c2/s2) x (4 x 10-S) Z 1.4 x lo-4. We have characterized this scheme dependence, which 
arises from three-loop effects of O(X,2aS,X,3) as rather large. 

For cc,,, = ~QCD = JMt, Mt = 180 GeV, and MH = 300 GeV, the scale variation of the 
MS expressions in the 0.5 5 < 5 2 interval is about 2.2 x 10m4 for Ap and 7.8 x 10e4 for 
AT. We also have characterized these variations as large: for AT, the variation is larger 
than the current uncertainty induced by Aa; for Ap, it amounts to about 70% of the 0(X:) 
contribution. If one considers larger intervals, 0.25 5 t 5 4 and 0.125 2 t 2 8, the 
variations in AT reach 1.5 x 10m3 and 2.4 x 10w3, respectively, which are much larger than 
current estimations of the theoretical error. It could be argued that these two intervals are 
too large and that one should not expect a small scale variation from an expression truncated 
at low orders. However, the fact that a rather large scale variation occurs already in the 
conservative range 0.5 5 E 5 2 is cause for some concern. 

Motivated by the above considerations, we have proposed in Section 5 a simple modifica- 
tion of the conventional expression for Ap [Eq. (ZS)] and of the relation between the Yukawa 
coupling Yt of the top quark, G,, and Mt [Eq. (30)]. Th ese modifications are based on a 
heuristic argument explained in Section 5. Because, for values of [ very different from unity, 
the electroweak and QCD corrections contain large logarithmic contributions, it is not a pri- 
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ori clear that the new framework ameliorates the scale and scheme dependences. Fortunately, 
the detailed numerical analysis in Section 5 shows that this is indeed the case. For instance, 
as mentioned in Section 5, in the crucial AT case, the scale variation of the MS expressions 
is reduced from 7.8 x 10v4 to 1.8 x 10B4 for 0.5 5 t 5 2, from 1.5 x 10m3 to 2.4 x 10s4 for 
0.25 2 t 5 4, and from 2.4 x 10e3 to 3.4 x lo-” for 0.125 < t 5 8. The scheme dependence 
of AT is decreased by factors of 3.3, 7.4, 6.4, and 2.0 for MH = (60,300,600,1000) GeV, 
respectively. A al g n o ous improvements occur in Ap. In the r case, there are significant 
improvements in the scheme dependence (which is already small in the conventional formu- 
lation) and in the MS scale variation over the interval 0.5 2 [ 5 2. However, the r analysis is 
at a different level of precision than the Ap and AT studies because the O(Xta:) corrections 
have not been evaluated in this case. A more detailed discussion is given in Section 5. 

For precise calculations, simplified formulae such as Eqs. (16) and (17) are not suffi- 
cient, as there are other important one-loop contributions not included in these leading 
Mt-dependent formulae. On the other hand, the leading Mt-dependent contributions to Ap 
are integral part of basic corrections such as AT and A+. As it has become customary to 
express Ap in terms of the pole mass M,, it is perhaps simplest to focus our attention on 
the on-shell expressions. In this regard, our proposal amounts to replacing Eq. (2) by the 
equally simple Eq. (26). Th e incorporation of QCD corrections in the kf~(~) term results 
in a slight anti-screening effect. As a consequence, as is clear from Tables 2-5, the OS Ap 
becomes slightly larger and approaches its %iS counterpart. In the OS evaluation of Ap, 
there remains the question of the choice of the QCD scale. A number of authors simply 
employ /LQCD = Mt, although there is no particularly clear reason for this selection when 
the pole mass Mt is involved. From Table 5, we see that this determination differs from 
the minimum value, 8.710 x 10s3, by 4.4 x lo-‘. In fact, some recent discussions, based on 
optimization methods and renormalon considerations, favour central values close to the min- 
imum. A specific evaluation of the QCD corrections along these lines, including an estimate 
of the theoretical error, is given in Ref. [lo]. 

For the purposes of this paper, it is interesting to inquire what effect the proposed 
modifications have on the electroweak observables. For Mt = 180 GeV and MH = 300 GeV, 
using the results of Sections 4 and 5 in the OS framework, we see that in the new approach 
Ap is increased, relative to the conventional framework, by 6.6 x lo-’ at ~LQCD = Mt and 
by 6.7 x 10m5 if the two evaluations are carried out at their respective minima. For Mw = 
80.32 GeV, employing Eq. (37a) of Ref. [5], we find that the theoretical prediction of Mw is 
increased by 

SMw = = C2 

2 c2 - s2 - 6c2Xt 
6(Ap) E 3.9 MeV. 

Similarly, from Eq. (37b) of Ref. [5] we have 

(32) 

&p = - T& p2W.p) CT -2 x lo-5, 
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with an equivalent change in sin2 B$‘j. Finally, for the Mt prediction we find the approximate 
shift 6Mt = (Mt/2)6(Ap)/Ap M 0.7 GeV. These are small changes, but they are of the 
same order of magnitude as recently evaluated higher-order effects [13]. An interesting 
feature is the anti-screening character of this modification, which is of opposite sign to 
most of the higher-order corrections. From the theoretical standpoint, it is reassuring that 
the simple and easily understandable modifications mentioned above sharply reduce the 
somewhat worrisome scheme and scale dependences encountered in Sections 3 and 4. 
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A Appendix 

As mentioned in Section 2, through terms of O(Xtad) Eq. (6) can be gleaned from Ref. [16] 
and an equivalent expression given in Ref. (151. F or completeness, we give an independent 
derivation based on the framework of Ref. [17], and evaluate the terms of O(Xtcyi). 

Starting from the relation between bare parameters, MF = yFvO/fi, where Mt and yt are 
the mass and Yukawa coupling of the top quark, respectively, and 21 is the vacuum expectation 
value of the Higgs field, and writing y: = (p2eY/4x)“/2(yt - 6yt), DO = (p2er/4a)-“/2(w - 6v), 
where E = 2 - D/2 and D is the dimension of space time, we have 

Mf = YtVlJz - [6yt(v - Sv) + ytSv]/& (34) 

We adjust the counterterms in such a manner that Mt = ytv/fi can be identified with the 
pole mass of the top quark. Defining bMt = [Syt(v - bv) + y,sV]/fi, this is implemented by 
choosing 

SMt = Qi= Mt) + M$/(vM;), (35) 

where E is the top-quark self-energy and i?’ represents the sum of the tadpole diagrams and 
the tadpole counterterm. For the sake of generality, the latter is left unspecified. Solving for 
the 6yt, we find 

6y, = (t&M, - y&v) /(v - 6~). (36) 
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In order to relate v - 6~ to G,, we recall that 

’ 

(37) 

(38) 

where g is the W(2) coupling, Sg is the corresponding counterterm, rnk is the bare W- 
boson mass, Aww(O) is the W-boson self-energy at 4 2 = 0, and -E stands for the remaining 
radiative corrections in the muon-decay amplitude [l, 171. From the relation rnb = g”vo/2, 
we have (g - bg)2/(mL)2 = 4/(v - &J)~, and Eq. (37) becomes 

II - 6v = (hGp) -1’2 (1 + D)-l. (39) 

Similarly, identifying MW = gv/2 with the W-boson mass, and recalling G,/fi = (g2/8M$)( l- 
AT)-l [l], we have 

IJ = (xhG,)-1’2 (1 - AT)-~/~, (40) 

6v = (&G,) -1’2 [(l - Av)-“~ - (1 + D)-ii2] . (41) 

Inserting Eqs. (39) and (41) into Eq. (36), and using yt = &l&/v = &V& (fiG,) 1’2 (l- 

Ar)‘i2, we find 

6yt = 23’4G;‘2Mt [(1 - AT)“~ - (1 + 2))‘j2(l - ~M,/M,)] . (42) 

The OS and MS expressions for yt are related by yt - 6y, = jjt - S&, where the carets 
denote MS quantities. Thus, & = gt - (Syt)z, where the MS subscript means that the MS 
renormalization has been carried out. Noting that the first term in Eq. (42) equals yt, we 
have 

it = 23/4@/2 
P Mt [(l + 1>)1’2(1 - SM,/M,)]=. (43) 

Neglecting two-loop effects in the square brackets, their expression simplifies to (1 + D/2 - 
Gi&/lMt )m. Recalling Eqs. (35) and (38), we have 

& = 23’4 G:/“M, 1+ Aww(O) E E($= M,) me_ 
2M$ 2 1 Mt ’ MS (44) 

It is important to note that the tadpole contributions have cancelled in Eq. (44)! The gauge 
independence can be checked by adding and subtracting T/(vM&), where iT stands for 
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the sum of the tadpole diagrams, with the counterterm excluded. We note that C(g = 
M&M + T&M;) ’ g g is au e independent, and so is Aww(O)/(2M&) + T/(vMi) - E/2, as 
it represents (modulo a factor l/2) th e u one-loop contribution to muon decay, before the f 11 
effect of the counterterms is taken into account. It is, therefore, sufficient to evaluate the 
separate parts of Eq. (44) in some particular gauge. For simplicity, we choose the ‘t Hooft- 
Feynman gauge. The term involving E does not contain Mt-dependent contributions, while 

(45) 

where r = MH/M~, L is defined in Eq. (5), and the dots represent Mt-independent terms. 
The contribution from -E($ = Mt)/Mt proportional to Xt is given in Eq. (35) of Ref. [7]. 
Combining these terms with Eq. (45), one obtains the electroweak term X,Ay(pu1)/2 in 
W (6). 

The QCD corrections are contained in Z. Writing Mt - 6MycD = T?Z~ - 6tipcD and 
recalling 6MQcD = CQ’“(# = M,,p), we have - [ZQ”“($= Mt,p)lm/Mt = Gz,(p)/Mt - 

1, where ‘Ijl&) is the MS running mass in &CD. To evaluate riLt(p)/Mt, we consider 
h(p)/Mt = [+&)/&(Mt)] [f&(&)/M]. The first f ac t or may be obtained from the QCD 
renormalization-group equation for tit(p). Through terms of O(cri), we have 

+4P> 
fk(Mt) = 1 - a(~)~oL + a2(Mt) [F(po + 70)~2 - 71~] , (46) 

where 70 = 1, 71 = 101/24 - 5nf/36 [28], and /?o is given below Eq. (14). For nf = 6, the 
coefficient of a2(Mt) b ecomes llL2/8 - 27L/8. Combining Eq. (46) with the expansion [29] 

ht( M) 
Mt 

= 1 - ia - a2(Mt) (10.90323 - ;) , 

we obtain 

%4 -=h(Mt)(L+;) Mt + a2(Mt) gL2 - ;L - 9.12545 ( 8 . 

(47) 

(48) 

Expressing a( M ) t in terms of a(p), Eq. (48) leads to the @cD(,) contribution in Eq. (6). 
The asymptotic behaviours of AL(M,), P(~)(T), and T(~)(T) are given by [6, 161 

11 - 4rT + O(r2 lnr), ifr< 1, 

A”,(Mt> = ifr > 1, (49) 

p(2)(r) = 
-12[(2) + 19 - 47rr + O(r2 In T), if T << 1, 

61n2r-27lnr+6C(2)+:+0 , ifr>l, (50) 
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-2((2) + 9 - 47rT + O(r2 lnr), 

(51) 
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FIGURE CAPTIONS 

Figure 1: Ap evaluated in the OS and MS schemes with put = j.q?CD = (Mt as a function oft 
assuming Mt = 180 GeV and MH = 300 GeV. The analysis is carried out in the conventional 
(Section 2) and modified (Section 5) formulations. 

Figure 2: Same as Fig. 1, but for M, = 60 GeV. 

Figure 3: Same as Fig. 1, but for MH = 1 TeV. 

Figure 4: Scale dependence of the conventional MS evaluation of Ap (Section 2) with pul = 
&JG and pQCD = ~QCD t M assuming Mt = 180 GeV and MH = 300 GeV. The contours of 
constant Ap are shown in the (log, &,,, log, &D) plane. The maximum and saddle point in 
this plane are marked with “2;” the maximum and minimum on the diagonal tu, = ~QCD are 
marked with “0.” 

Figure 5: Same as Fig. 2, but for the modified formulation (Section 5). 
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